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LFCS, Division of Informatics, University of Edinburgh,

JCMB, King’s Buildings, Edinburgh EH9 3JZ
Alin.Stefanescu@dcs.ed.ac.uk

Abstract

Our objective is to develop an automatic synthesis proce-
dure for distributed systems having a flexible specification
language and a reasonable computational complexity such
that applications to real case studies to be possible. We in-
tend to use asynchronous automata as theoretical models
for the systems and distributed versions of temporal logics
based on Mazurkiewicz traces for the specification. Target
applications of the synthesis procedure are classes of sys-
tems such as small distributed algorithms and asynchronous
circuits.

1 Introduction

The design of correct distributed systems is a difficult
and error-prone task. This is due to the multitude of possi-
ble interactions between the concurrent components of the
system. Briefly, the design of a system consists in giving a
specification and then finding a model for this.

There are two complementary approaches to this prob-
lem: verification and synthesis. The verification proce-
dure checks if a given model satisfies the specification,
whereas in the synthesis approach the model is directly syn-
thesized from the specification. Regarding verification, if
the given model fails to fulfill the specification, this should
be checked and iteratively improved by the user. In the lat-
ter case of synthesis, the system is correct by construction
so that there is no need for further verification. Despite
this advantage and the fact that the approaches have sim-
ilar computational complexity, automatic synthesis has so
far been less successful than verification. A possible expla-
nation is the fact that both approaches were mostly studied
using temporal logics like LTL or CTL for the specifica-
tion. A shortcoming of these logics is the fact that they can-
not express properties about casual independences between
the different actions of the system, hence these properties
cannot play a role in the synthesis procedure. This will be
discussed further in section 2.

Asynchronous automata are a well-known formal model
in which synthesis takes into account an independence re-
lation on actions. Asynchronous automata were proposed
by Zielonka [Zie87] as a natural generalization of finite
state automata for concurrent systems and, loosely speak-
ing, they are sequential automata communicating through
‘rendez-vous’. These automata have been introduced to
provide a model of computation for trace languages, which
are languages closed under an explicit independence rela-
tion between actions. Zielonka gives a construction that ac-
cepts as input a regular trace language and a distribution
pattern and outputs an asynchronous automaton accepting
the given language. The procedure is complicated and com-
putationally involved despite attempts to simplify it. Fur-
thermore, little has been done to use its power in practice
and to turn the theory into a reliable computer science tool
(to the best of our knowledge no steps towards implementa-
tions have been taken).

Objectives of our research The main lines along which
our efforts will concentrate are the following:

• to develop a specification language based on a dis-
tributed version of temporal logic, which is able to ex-
press properties about independence of actions

• to design a synthesis procedure based on simplifica-
tions/improvements of the algorithms for asynchro-
nous automata

• to implement the new procedure efficiently

• to apply the above procedure to case studies in areas
such as small distributed algorithms (e.g. mutual ex-
clusion, communication protocols) and asynchronous
circuits.

The extended abstract is organized as follows. In the next
section we present the synthesis problem and current solu-
tions. In section 3 we outline preliminary ideas and the pro-
posed approach. We give a toy example in section 4 and we
continue with more insights in section 5, where we summa-
rize the work done until now. We conclude with section 6.
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Table 1. Comparing two solutions for mutual exclusion problem

2 The synthesis problem

We study the problem of automatic synthesis of dis-
tributed systems. In system synthesis we transform a speci-
fication into a system that is guaranteed to satisfy this speci-
fication. This is a problem that has been investigated in var-
ious frameworks but generally proved to be a rather difficult
question. We mention seminal works, which generated the
mainstreams in the area, and try to motivate the goals of our
research.

Temporal logics Most related work was carried out us-
ing temporal logic for the specification. In [EC82], Emer-
son and Clarke proposed a synthesis procedure using the
branching time temporal logic CTL. Of similar nature, but
using the linear time temporal logic LTL, is the approach
by Manna and Wolper in [MW84]. The main problem
with approaches based on (classical) temporal logics is that
such logics are not able to express the independences be-
tween the involved actions, thus the procedure synthesizes
a global transition system and not a distributed concurrent
one. Moreover, the constructed transition system might not
be distributable (i.e. there is no distributed system exhibit-
ing the same behaviour).

A small example illustrating this claim is the solution
for mutual exclusion synthesized in [EC82]. Two pro-
cesses must share a resource that they can access from a
critical section. We consider an alphabet of actionsΣ :=
{req

1
, enter1, exit1, req2

, enter2, exit2} with the usual in-
tended meanings: request access to a critical section, enter it
and exit from it; the indices 1 and 2 specify the process that
executes the action. The specification based on CTL con-
sists of three main properties (mutual exclusion, deadlock
freedom and absence of starvation) plus a number of prop-
erties for local behaviour. The result of synthesis is the tran-

sition system shown in the left column of Table 1. The so-
lution is not satisfactory because it is not distributable.The
reason is that actionsreq

1
andreq

2
have to be independent

(i.e. each process should freely request access to the critical
section without having to synchronize in any way), but the
given solution fails in this respect. Ifreq

1
andreq

2
would

be independent, then the sequencesreq1req2 andreq2req1

should lead to the same global state, but this is not the case
(see the states marked with an ‘x’).

Further research on synthesis using temporal logics was
generated by Pnueli and Rosner [PR89], who studied the
synthesis of reactive modules (or synthesis of open sys-
tems interacting with their environment). In this problem,
there is a module and its environment that alternate their
moves as in a game and the goal is to find a winning strat-
egy for the module (in other words, the module should sat-
isfy the specification irrespective of how the environment
behaves). The problem received further attention (see for
example [KV01] for recent acquisitions in the area), but the
specification does not yet incorporate the notion of indepen-
dence of actions and the result of synthesis is a module and
not a distributed system.

Petri nets Petri nets are well established models for con-
current systems. In [ER90], Ehrenfeucht and Rozenberg in-
troduced the theory of regions in order to synthesize a Petri
net from a given transition system (see [BD98] for a sur-
vey on further development of theory). This work has in-
spired applications in the automatic synthesis of asynchro-
nous circuits [CKKLY00] and synthesis of distributed tran-
sition systems [CMT99]. Nonetheless, the approach lacks
a flexible specification language, independence between ac-
tions is not explicit and it has no abstract notion of action
such that different system actions correspond to the same
abstract action.
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Mazurkiewicz traces and asynchronous automata

A notion of trace was proposed by Mazurkiewicz
[Maz77] for the study of concurrent systems and consti-
tutes now a classical subject (see [DR95] for the extensive
research over the years on traces). A concurrent behaviour
is simply captured enriching a set of actions with the infor-
mation about independence of actions, denoted‖. The no-
tation‖ aims at capturing the fact that two actions that are
independent could be executed in parallel and could there-
fore appear in a computation in any order. The executions
of a distributed system can then be naturally grouped to-
gether into equivalence classes, where two computations are
equated in case they are two different interleavings of the
same partial order stretch of behaviour. Atrace is just such
an equivalence class of computations. Atrace languageis
a languages closed under the independence relation‖. It is
clear that the behaviour of a distributed system is a trace
language. A trace language isregular if it is accepted by a
conventional finite state machine.

Asynchronous automata were introduced by
Zielonka [Zie87] in order to provide a computational
model for the regular trace languages. Zielonka’s result
solved a problem debated for a long time, namely finding a
distributed model that has the behaviour given by a regular
trace language. The asynchronous automata consist of a set
of local automata that periodically synchronize according
to a communication structure in order to process the input.

We choose the notions of traces and asynchronous au-
tomata as theoretical foundations for the proposed synthesis
of distributed systems. There are meaningful results char-
acterizing their relation and they are naturally modeling the
behaviour of a concurrent system which involves indepen-
dence of actions. To support this statement, let us return to
the previous example of mutual exclusion and see what is
the solution based on traces. We start with the same set of
actions as before and we add to the specification the inde-
pendences between actions such that both processes should
independently request access and exit the critical section.
Thereforereq

1
‖ req

2
is part of the specification. Then we

describe the properties of mutual exclusion, absence of star-
vation, deadlock freedom and local behaviour of processes
in terms of regular expressions. For example mutual exclu-
sion condition should forbid from the behaviour sequences
like Σ∗enter1(Σ\exit1)

∗enter2Σ
∗ (second process cannot

enter the critical section if the first process was entering the
critical section, but did not exit). We obtain the global au-
tomaton in the right column of Table 1, which we see that
it has a correct behaviour in the situation both processes re-
quest access (the sequencesreq

1
req

2
andreq

2
req

1
lead to

the same global state marked with an ‘x’). It is now essential
that, because of Zielonka’s result, the global automaton is
distributable, so that there exists an asynchronous automata
exhibiting precisely the given behaviour.

3 Proposed approach

The aim of the proposed research is to develop an auto-
matic synthesis procedure for distributed systems having a
flexible specification language and a reasonable computa-
tional complexity such that applications to real case studies
are made possible. The different stages of this research are
given below.

Specification language The final goal is to have a spe-
cification language based on temporal logics enriched with
information about independences. The behaviour and the
independences are initially specified separately. The be-
haviour will be given either as a regular expression or an
LTL formula (depending on the studied model), whereas
the independence will be given as a binary relation. An
important problem is that of consistency between these two
parts: if the specification enables a computation of the sys-
tem, then all the computations equivalent with respect to the
independence should be enabled by the specification.

In a unified manner, we would like to have a unique logic
that is able to express both behaviour and independences.
We will profit from the current efforts to find distributed
versions of temporal logic capable of expressing concurrent
behaviour (see in [TH98] a recent survey on distributed ver-
sions of linear time temporal logic LTL) and as a candidate
we will consider monadic second order logic on strings.

Synthesis procedure Zielonka’s procedure is a strong
theoretical result, but unfortunately its complexity is super-
exponential, hence it outputs very large asynchronous au-
tomata. This is not surprising as state space explosion is
a common problem for concurrent systems. A challenge
is to find simplifications, running-time improvements and
heuristics for the algorithm. Also, we are looking for nice
classes of distributed systems, which are rich enough to in-
clude interesting examples for which we can develop sim-
pler versions of the algorithm.

Unfoldings are a successful approach based on branch-
ing time partial order semantics (see [ERV96], for exam-
ple). Given a language and an independence relation, we
can easily construct a (usually infinite) unfolding. The prob-
lem, however, is to find a good criterion of identifying states
that can result in a finite machine. Our experience on some
examples indicates unfoldings as a promising idea in our
framework.

Implementation The procedure, which will eventually
emerge from the presented research, should receive ma-
chine support enabling users to deal with a large state
space. Implementation of this should include procedures for
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Global automaton Distribution Result of synthesis
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Translated distributed algorithm:

[Producer]: [Consumer]:
repeat forever repeat forever

produce if (buffer=filled) then
if (buffer=empty)then buffer:= empty

buffer:= filled consume
end repeat end repeat

Table 2. Synthesis at work for the Producer-Consumer example

checking the consistency of the specification, closing reg-
ular behaviours under a given independence relation, syn-
thesizing distributed systems using the improved version of
Zielonka’s algorithm as well as the original construction (to
compare the results).

Applications The developed theoretical and practical
tools should prove their qualities on real case studies like
small distributed algorithms and asynchronous circuits.

An instance of synthesis for distributed algorithms is:
given all possible runs of an algorithm and a distribution
structure, construct a distributed algorithm having the de-
scribed behaviour. The literature is rich in challenging prob-
lems such as mutual exclusion, resource allocation (e.g.
dining philosophers), cache coherence and communications
protocols (e.g. alternating bit protocol). In addition to
the automatic synthesis procedure, further attention willbe
given to general guidelines on how to specify the problem
(which is not always an easy task, for example for extracting
information on independences needed for the synthesis).

Asynchronous circuits are an established target in hard-
ware design. We will compare our procedure with the one
proposed using Petri nets in [CKKLY00].

4 A simple example

Just to show how the procedure would work, we syn-
thesize a solution for a simplified version of the producer-
consumer problem.

We specify the trade between aproducerand aconsumer
considering the actions of producing, sending, receiving

and consumingΣ = {prod , send , rcv , cons}. The regular
specificationS is given by:

• S ⊆ shuffle((prod send)∗, (rcv cons)∗), (S is in-
cluded in the interleaving of the behaviours of the ‘pro-
ducer’ and ‘consumer’)

• S ⊆ (T ∗sendT ∗rcvT ∗)∗, with T = (Σ\{send , rcv})
(the consumer can only receive something that was
previously sent)

In the left column of Table 2 we have the global auto-
maton obtained from the intersection of the previous reg-
ular expressions. In the middle column we have a natural
choice for independences between actions. We can then dis-
tribute the actions to be executed by three processors such
that two independent actions are executed by disjoint sets
of processors. We apply the synthesis procedure and we
obtain the asynchronous automaton depicted in the right
column which consists of the synchronization of three lo-
cal automata with the statesQi = {0i, 1i}, i=1,2,3 and the
global initial state(01, 02, 03).

The result is as we would have expected: the modeling
of the trade using a buffer of capacity one modeled by pro-
cessP2. If we see the local states ofP2 (02 and 12) as
the states of a buffer, which is initially empty, then we can
translate the asynchronous automata in the distributed algo-
rithm in the right column of Table 2. The translation of an
asynchronous automaton into a distributed algorithm is not
done automatically and further research should be carried
out in order to establish if this can be done using a general
algorithm.
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5 Current stage of research

In this section we will address the state-of-the-art con-
cerning ideas introduced in the previous section. We will
follow the same modular structure as before:

Specification language We explored specifications given
in terms of a regular behaviour together with an indepen-
dence structure and we had to deal with the consistency
problem:

• when regular behaviour was described as a regular lan-
guage we studied recent results on closing a regular
expression under an independence relation. The clo-
sure of a regular language is not regular in general, so
we studied a subclass of regular languages (Alphabetic
Pattern Constraints, APC) with this closure property
proposed in [BMT01].

• when the regular behaviour was described as clas-
sic deterministic finite automaton, we have to ensure
that the automaton satisfies some syntactic properties
called independent and forward diamond rules (for ex-
ample, the forward diamond rule is: for every stateq

such thatq
a
→ q′ andq

b
→ q′′ anda ‖ b, there exists

a stateq′′′ such thatq′
b
→ q′′′ andq′′

a
→ q′′′). A pro-

cedure was developed to safely remove the transitions
which made the automaton inconsistent with respect to
the independence relation.

Synthesis procedure We invested a great deal of time in
the understanding of Zielonka’s construction and proof of
correctness, which is notoriously hard. We tried various
ideas in order to simplify it, but until now only minor im-
provements have been achieved.

Yet, there are some hopes related to the idea of resolv-
ing the problem using unfoldings. The trick is to combine
unfoldings with a recent result found by Morin [Mor99],
which gives a polynomial test for checking whether a given
deterministic automaton together with a distribution struc-
ture is isomorphic with an asynchronous automaton. We
consider two cases:

• when the behaviour of the distributed system isfinite
we have a method using unfoldings for synthesizing an
asynchronous automaton (we combine Morin’s result
with the fact that a finite behaviour generates a finite
unfolding). A possible idea is to use the algorithm in
the area of message sequence charts (MSCs), which
have a finite behaviour.

• when the behaviour of the distributed system isinfi-
nite we found a heuristic based on unfoldings using

both Morin’s test and conditions in Zielonka’s con-
struction. The heuristics worked well for many exam-
ples and drastic reductions of the state space were ob-
tained. Unfortunately, if the solution requires a large
number of iterations, the heuristics blows up the state
space.

Implementation We should mention that we are not
aware of any implementation for synthesis of asynchronous
automata. The following have so far been implemented:

• the procedure of closing an APC under an indepen-
dence relation from [BMT01]

• Morin’s polynomial test

• Zielonka’s algorithm

• a heuristic for Zielonka’s algorithm.

Because an asynchronous automaton can also be seen as a
1-safe Petri net, another idea is to investigate and implement
an algorithm for reducing Petri nets based on the so called
place bisimulation (see [SS00] for details).

Applications We only considered examples from the area
of small distributed algorithms. For instance, we were able
to synthesize two new versions for mutual exclusion prob-
lem for two concurrent processes based on the global auto-
maton in the right column of Table 1. In the first version,
the processes are communicating using two shared variables
that are both able to read and write. In the second (im-
proved) version, we give priority to one of the processes
and we are also using two shared variables, but now at each
step the processes are reading or writing only one variable.
In the draft paper [ŞE] we are presenting the automatic syn-
thesis method developed so far applied on case studies like
mutual exclusion and dining philosophers. In section 4 we
succinctly presented a synthesis for a simplified version of
the producer-consumer problem.

A notable collateral result was obtained while working
on the synthesis problem. We exactly characterized the sub-
class of languages accepted by safe deterministic asynchro-
nous automata [Zie89] as the class of languages accepted
by (classic) deterministic automata satisfying the diamond
rules ID and FD. These languages are suitable to express
global behaviour of distributed algorithms. The details are
given in the draft paper [ŞE].

Regarding the expectations about how well the approach
will scale to different problems, we hope to have good re-
sults when dealing with small examples, but we cannot pre-
dict anything for larger problems because we have an expo-
nential blowup in general for the synthesis of asynchronous
automata.
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6 Final hopes

As a PhD is a combination of experimentation and per-
sistence, it is natural to express what is hoped to be the final
outcome of this research:

Based on the experience gained experiment-
ing with different toy examples for which we
were able to synthesize nice solutions, and the at-
tempts using unfoldings, wehope to find a con-
sistent and feasible approach for synthesis of dis-
tributed systems and to build another necessary
bridge between theory and practice.

Acknowledgements The described work is carried out at
the Laboratory for Foundations of Computer Science, Uni-
versity of Edinburgh, under the supervision of Professor
Javier Esparza and is supported by an EPSRC Grant.

References

[BD98] E. Badouel and Ph. Darondeau. Theory of regions. LNCS
1491 (1998) 529-586.

[BMT01] A. Bouajjani, A. Muscholl, and T. Touili. Permutation
Rewriting and Algorithmic Verification. InProc. LICS’01,
IEEE Computer Society(2001) 399-408.

[CKKLY00] J. Cortadella, M. Kishinevsky, A. Kondratyev, L.
Lavagno, and A. Yakovlev. Hardware and Petri Nets: Appli-
cation to Asynchronous Circuit Design. InProc ICATPN’00,
LNCS 1825 (2000) 1-15.

[CMT99] I. Castellani, M. Mukund, and P. S. Thiagarajan. Syn-
thesizing distributed transition systems from global specifica-
tions. InProc. FSTTCS19, LNCS 1739 (1999) 219-231.

[DR95] V. Diekert and G. Rozenberg (Eds.).The Book of Traces.
World Scientific, 1995.

[EC82] E. A. Emerson and E. M. Clarke. Using branching time
temporal logic to synthesize synchronization skeletons.Sci-
ence of Computer Programming2 (1982) 241-266.

[ER90] A. Ehrenfeucht and G. Rozenberg. Partial (set) 2-
structures I and II.Acta Informatica27(4) (1990) 315-368.
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